Program Listing for File rocrand_mrg32k3a.h
↰ Return to documentation for file (library/include/rocrand/rocrand_mrg32k3a.h
)
// Copyright (c) 2017-2022 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#ifndef ROCRAND_MRG32K3A_H_
#define ROCRAND_MRG32K3A_H_
#ifndef FQUALIFIERS
#define FQUALIFIERS __forceinline__ __device__
#endif // FQUALIFIERS_
#include "rocrand/rocrand_common.h"
#include "rocrand/rocrand_mrg32k3a_precomputed.h"
#define ROCRAND_MRG32K3A_POW32 4294967296
#define ROCRAND_MRG32K3A_M1 4294967087
#define ROCRAND_MRG32K3A_M1C 209
#define ROCRAND_MRG32K3A_M2 4294944443
#define ROCRAND_MRG32K3A_M2C 22853
#define ROCRAND_MRG32K3A_A12 1403580
#define ROCRAND_MRG32K3A_A13 (4294967087 - 810728)
#define ROCRAND_MRG32K3A_A13N 810728
#define ROCRAND_MRG32K3A_A21 527612
#define ROCRAND_MRG32K3A_A23 (4294944443 - 1370589)
#define ROCRAND_MRG32K3A_A23N 1370589
#define ROCRAND_MRG32K3A_NORM_DOUBLE (2.3283065498378288e-10) // 1/ROCRAND_MRG32K3A_M1
#define ROCRAND_MRG32K3A_UINT_NORM (1.000000048661607) // (ROCRAND_MRG32K3A_POW32 - 1)/(ROCRAND_MRG32K3A_M1 - 1)
#define ROCRAND_MRG32K3A_DEFAULT_SEED 12345ULL
// end of group rocranddevice
namespace rocrand_device {
class mrg32k3a_engine
{
public:
struct mrg32k3a_state
{
unsigned int g1[3];
unsigned int g2[3];
#ifndef ROCRAND_DETAIL_MRG32K3A_BM_NOT_IN_STATE
// The Box–Muller transform requires two inputs to convert uniformly
// distributed real values [0; 1] to normally distributed real values
// (with mean = 0, and stddev = 1). Often user wants only one
// normally distributed number, to save performance and random
// numbers the 2nd value is saved for future requests.
unsigned int boxmuller_float_state; // is there a float in boxmuller_float
unsigned int boxmuller_double_state; // is there a double in boxmuller_double
float boxmuller_float; // normally distributed float
double boxmuller_double; // normally distributed double
#endif
};
FQUALIFIERS
mrg32k3a_engine()
{
this->seed(ROCRAND_MRG32K3A_DEFAULT_SEED, 0, 0);
}
FQUALIFIERS
mrg32k3a_engine(const unsigned long long seed,
const unsigned long long subsequence,
const unsigned long long offset)
{
this->seed(seed, subsequence, offset);
}
FQUALIFIERS
void seed(unsigned long long seed_value,
const unsigned long long subsequence,
const unsigned long long offset)
{
if(seed_value == 0)
{
seed_value = ROCRAND_MRG32K3A_DEFAULT_SEED;
}
unsigned int x = (unsigned int) seed_value ^ 0x55555555U;
unsigned int y = (unsigned int) ((seed_value >> 32) ^ 0xAAAAAAAAU);
m_state.g1[0] = mod_mul_m1(x, seed_value);
m_state.g1[1] = mod_mul_m1(y, seed_value);
m_state.g1[2] = mod_mul_m1(x, seed_value);
m_state.g2[0] = mod_mul_m2(y, seed_value);
m_state.g2[1] = mod_mul_m2(x, seed_value);
m_state.g2[2] = mod_mul_m2(y, seed_value);
this->restart(subsequence, offset);
}
FQUALIFIERS
void discard(unsigned long long offset)
{
this->discard_impl(offset);
}
FQUALIFIERS
void discard_subsequence(unsigned long long subsequence)
{
this->discard_subsequence_impl(subsequence);
}
FQUALIFIERS
void discard_sequence(unsigned long long sequence)
{
this->discard_sequence_impl(sequence);
}
FQUALIFIERS
void restart(const unsigned long long subsequence,
const unsigned long long offset)
{
#ifndef ROCRAND_DETAIL_MRG32K3A_BM_NOT_IN_STATE
m_state.boxmuller_float_state = 0;
m_state.boxmuller_double_state = 0;
#endif
this->discard_subsequence_impl(subsequence);
this->discard_impl(offset);
}
FQUALIFIERS
unsigned int operator()()
{
return this->next();
}
// Returned value is in range [1, ROCRAND_MRG32K3A_M1],
// where ROCRAND_MRG32K3A_M1 < UINT_MAX
FQUALIFIERS
unsigned int next()
{
const unsigned int p1 = mod_m1(
detail::mad_u64_u32(
ROCRAND_MRG32K3A_A12,
m_state.g1[1],
detail::mad_u64_u32(
ROCRAND_MRG32K3A_A13N,
(ROCRAND_MRG32K3A_M1 - m_state.g1[0]),
0
)
)
);
m_state.g1[0] = m_state.g1[1]; m_state.g1[1] = m_state.g1[2];
m_state.g1[2] = p1;
const unsigned int p2 = mod_m2(
detail::mad_u64_u32(
ROCRAND_MRG32K3A_A21,
m_state.g2[2],
detail::mad_u64_u32(
ROCRAND_MRG32K3A_A23N,
(ROCRAND_MRG32K3A_M2 - m_state.g2[0]),
0
)
)
);
m_state.g2[0] = m_state.g2[1]; m_state.g2[1] = m_state.g2[2];
m_state.g2[2] = p2;
return (p1 - p2) + (p1 <= p2 ? ROCRAND_MRG32K3A_M1 : 0);
}
protected:
// Advances the internal state to skip \p offset numbers.
// DOES NOT CALCULATE NEW ULONGLONG
FQUALIFIERS
void discard_impl(unsigned long long offset)
{
discard_state(offset);
}
// DOES NOT CALCULATE NEW ULONGLONG
FQUALIFIERS
void discard_subsequence_impl(unsigned long long subsequence)
{
int i = 0;
while(subsequence > 0) {
if (subsequence & 1) {
#if defined(__HIP_DEVICE_COMPILE__)
mod_mat_vec_m1(d_A1P76 + i, m_state.g1);
mod_mat_vec_m2(d_A2P76 + i, m_state.g2);
#else
mod_mat_vec_m1(h_A1P76 + i, m_state.g1);
mod_mat_vec_m2(h_A2P76 + i, m_state.g2);
#endif
}
subsequence >>= 1;
i += 9;
}
}
// DOES NOT CALCULATE NEW ULONGLONG
FQUALIFIERS
void discard_sequence_impl(unsigned long long sequence)
{
int i = 0;
while(sequence > 0) {
if (sequence & 1) {
#if defined(__HIP_DEVICE_COMPILE__)
mod_mat_vec_m1(d_A1P127 + i, m_state.g1);
mod_mat_vec_m2(d_A2P127 + i, m_state.g2);
#else
mod_mat_vec_m1(h_A1P127 + i, m_state.g1);
mod_mat_vec_m2(h_A2P127 + i, m_state.g2);
#endif
}
sequence >>= 1;
i += 9;
}
}
// Advances the internal state by offset times.
// DOES NOT CALCULATE NEW ULONGLONG
FQUALIFIERS
void discard_state(unsigned long long offset)
{
int i = 0;
while(offset > 0) {
if (offset & 1) {
#if defined(__HIP_DEVICE_COMPILE__)
mod_mat_vec_m1(d_A1 + i, m_state.g1);
mod_mat_vec_m2(d_A2 + i, m_state.g2);
#else
mod_mat_vec_m1(h_A1 + i, m_state.g1);
mod_mat_vec_m2(h_A2 + i, m_state.g2);
#endif
}
offset >>= 1;
i += 9;
}
}
// Advances the internal state to the next state
// DOES NOT CALCULATE NEW ULONGLONG
FQUALIFIERS
void discard_state()
{
discard_state(1);
}
private:
FQUALIFIERS
void mod_mat_vec_m1(const unsigned long long * A,
unsigned int * s)
{
unsigned long long x[3];
x[0] = mod_m1(mod_m1(A[0] * s[0])
+ mod_m1(A[1] * s[1])
+ mod_m1(A[2] * s[2]));
x[1] = mod_m1(mod_m1(A[3] * s[0])
+ mod_m1(A[4] * s[1])
+ mod_m1(A[5] * s[2]));
x[2] = mod_m1(mod_m1(A[6] * s[0])
+ mod_m1(A[7] * s[1])
+ mod_m1(A[8] * s[2]));
s[0] = x[0];
s[1] = x[1];
s[2] = x[2];
}
FQUALIFIERS
void mod_mat_vec_m2(const unsigned long long * A,
unsigned int * s)
{
unsigned long long x[3];
x[0] = mod_m2(mod_m2(A[0] * s[0])
+ mod_m2(A[1] * s[1])
+ mod_m2(A[2] * s[2]));
x[1] = mod_m2(mod_m2(A[3] * s[0])
+ mod_m2(A[4] * s[1])
+ mod_m2(A[5] * s[2]));
x[2] = mod_m2(mod_m2(A[6] * s[0])
+ mod_m2(A[7] * s[1])
+ mod_m2(A[8] * s[2]));
s[0] = x[0];
s[1] = x[1];
s[2] = x[2];
}
FQUALIFIERS
unsigned long long mod_mul_m1(unsigned int i,
unsigned long long j)
{
long long hi, lo, temp1, temp2;
hi = i / 131072;
lo = i - (hi * 131072);
temp1 = mod_m1(hi * j) * 131072;
temp2 = mod_m1(lo * j);
lo = mod_m1(temp1 + temp2);
if (lo < 0)
lo += ROCRAND_MRG32K3A_M1;
return lo;
}
FQUALIFIERS
unsigned long long mod_m1(unsigned long long p)
{
p = detail::mad_u64_u32(ROCRAND_MRG32K3A_M1C, (p >> 32), p & (ROCRAND_MRG32K3A_POW32 - 1));
if (p >= ROCRAND_MRG32K3A_M1)
p -= ROCRAND_MRG32K3A_M1;
return p;
}
FQUALIFIERS
unsigned long long mod_mul_m2(unsigned int i,
unsigned long long j)
{
long long hi, lo, temp1, temp2;
hi = i / 131072;
lo = i - (hi * 131072);
temp1 = mod_m2(hi * j) * 131072;
temp2 = mod_m2(lo * j);
lo = mod_m2(temp1 + temp2);
if (lo < 0)
lo += ROCRAND_MRG32K3A_M2;
return lo;
}
FQUALIFIERS
unsigned long long mod_m2(unsigned long long p)
{
p = detail::mad_u64_u32(ROCRAND_MRG32K3A_M2C, (p >> 32), p & (ROCRAND_MRG32K3A_POW32 - 1));
p = detail::mad_u64_u32(ROCRAND_MRG32K3A_M2C, (p >> 32), p & (ROCRAND_MRG32K3A_POW32 - 1));
if (p >= ROCRAND_MRG32K3A_M2)
p -= ROCRAND_MRG32K3A_M2;
return p;
}
protected:
// State
mrg32k3a_state m_state;
#ifndef ROCRAND_DETAIL_MRG32K3A_BM_NOT_IN_STATE
friend struct detail::engine_boxmuller_helper<mrg32k3a_engine>;
#endif
}; // mrg32k3a_engine class
} // end namespace rocrand_device
typedef rocrand_device::mrg32k3a_engine rocrand_state_mrg32k3a;
FQUALIFIERS
void rocrand_init(const unsigned long long seed,
const unsigned long long subsequence,
const unsigned long long offset,
rocrand_state_mrg32k3a * state)
{
*state = rocrand_state_mrg32k3a(seed, subsequence, offset);
}
FQUALIFIERS
unsigned int rocrand(rocrand_state_mrg32k3a * state)
{
// next() in [1, ROCRAND_MRG32K3A_M1]
return static_cast<unsigned int>((state->next() - 1) * ROCRAND_MRG32K3A_UINT_NORM);
}
FQUALIFIERS
void skipahead(unsigned long long offset, rocrand_state_mrg32k3a * state)
{
return state->discard(offset);
}
FQUALIFIERS
void skipahead_subsequence(unsigned long long subsequence, rocrand_state_mrg32k3a * state)
{
return state->discard_subsequence(subsequence);
}
FQUALIFIERS
void skipahead_sequence(unsigned long long sequence, rocrand_state_mrg32k3a * state)
{
return state->discard_sequence(sequence);
}
#endif // ROCRAND_MRG32K3A_H_